Note

Use code sample.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
from tensorflow import keras
from tensorflow.keras import model

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

x_train = x_train.reshape(60000, 784).astype("float32") / 255
x_test = x_test.reshape(10000, 784).astype("float32") / 255

model.compile(
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer=keras.optimizers.RMSprop(),
    metrics=["accuracy"],
)

history = model.fit(x_train, y_train, batch_size=64, epochs=2, validation_split=0.2)

test_scores = model.evaluate(x_test, y_test, verbose=2)
print("Test loss:", test_scores[0])
print("Test accuracy:", test_scores[1])

Rainbow Theme

image

Base16 Tomorrow Dark+

image

1337 Theme

image

Brogrammer Theme

image

Monokai Vibrant

image